

"Seeing is believing"

Combining Cooling & Heating to Provide Heat for a Low Temperature District Heating (LTDH) System

Ali Moallemi (Postdoc Researcher)

Department of Energy Sciences, LTH, Lund University, Sweden

July 2021

COOL DH – Abbreviation

• Cool ways of using low grade heat sources from cOOling and surplus heat for heating of energy efficient buildings with new Low temperature District Heating solutions.

COOL DH – Demos (2017 – 2022)

The Brunnshög demo site 2020

ESS Research facility

Xplorion Residential building

Østerby

Max IV

COOL DH – Brunnshög

COOL DH – Main Characteristics

- Integration of heat pumps for heat recovery and topping hot water
- 2 LTDH networks (4GDH)
- 1 ULTDH demo (5GDH)
- Prosumers role: Shopping, Bank data centers, Hotels
- New Plastic PE-RT pipes
- Flat stations
- Heat recovery pipes
- RES share

COOL DH – Outcomes

- Energy: More efficiency & lower heat losses
- Economical impacts: Lower cost
- Emissions: Reduction in CO₂
- Social study: Increasing comfort, safety & customer satisfactions
- Replicability: More than 800 DH utilities in both countries

 <u>Heat source</u>: The heat recovery system at MAX IV composed by a series of HPs

- <u>Purpose</u>: Supply cooling demand of the facility and at the same time recovering the surplus heat from low temperature heat source to supply local district heating network.
- <u>Combining Cooling & Heating</u> to Provide Heat for a LTDH System
- <u>RES</u>: The district heating is entirely supplied by renewable sources since the electricity for the heat pumps is produced by hydropower.

HP installed at MAX IV

DH distribution pipe, heat exchanger & circulation pump

Vibration sensitive

Properties of the system

- Capacity: 5.8 MW for the heating and 5.2 MW for the cooling circuit
- 2021 Consumption Estimation: 16.7 GWh of cooling and heat recovery of 23.3 GWh
- COP_h = 3.6 and COP_c = 2.5 in high-temperature mode
- Expected COP_h > 4 when in low-temperature mode.

HP Basics

Cascade Coupling

Heat Pump System

- Division into several temperature levels
- Three main HPs
- Optimization of the cooling temperatures
- Cascade coupling of the individual units

Results of HP1

Cold Side

Flow [m³/h]	Water temp in [°C]	Water temp out [°C]	Cooling power [kW]
101.1	16.9	7.3	1131
100.1	16.8	7.2	1116
102.2	16.9	7.2	1156
116.1	16.2	7.7	1140

Hot Side

Flow [m ³ /h]	DH water temp return [°C]	DH water temp supply [°C]	Heating power [kW]
45.8	40.6	78.1	2001
48.2	41.1	78.2	2081
46.6	40.7	78.1	2019
40.2	40.2	78.2	1780

"The project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement n° 767799-COOL DH- H2020-EE-2016-2017/H2020-EE-2017-RIA-IA"

COPs

Power consumption [kW]	COPc	СОРн
666	1.7	3.0
704	1.6	3.0
690	1.7	3.0
608	1.9	2.9

Results of HP2

Cold Side

Flow [m ³ /h]	Water temp in [°C]	Water temp out [°C]	Cooling power [kW]
167.8	27.1	22.8	854
166.3	27.2	23.1	778
160.2	27.1	22.8	796
162.7	27.1	22.0	971

Hot Side

Flow [m ³ /h]	DH water temp return [°C]	DH water temp supply [°C]	Heating power [kW]
32.3	40.6	73.2	1226
28.2	41.1	74.4	1086
26.7	40.7	76.8	1128
30.2	40.2	79.4	1381

"The project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement n° 767799-COOL DH- H2020-EE-2016-2017/H2020-EE-2017-RIA-IA"

COPs

Power consumption [kW]	COPc	СОРн	
342	2.5	3.6	
302	2.6	3.6	
320	2.5	3.5	
403	2.4	3.4	

Results – COP of hot side

MAX IV - Simulation case D

COOL DH - Challenges

- COVID-19 (Stop & delay)
- Coordination between companies & municipalities in two countries
- Progress is not the same as planned
- Low knowledge & experiences in innovations & new concepts
- Changes in project plans (Demos & fabrication)
- Communication with costumers and partners

COOL DH – Lessons Learned

- Predict unexpected events
- Importance of planning
- Mutual understanding
- Considering practical delays
- Training
- Flexibility for changes
- Having plan B
- Social awareness

Thanks For Your Attention